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Multiresolution Time-Domain Using CDF
Biorthogonal Wavelets

Traian DogaryMember, IEEEand Lawrence CarirfFellow, IEEE

Abstract—A new approach to the multiresolution time-domain  structure, and accurate treatment of the interface between
(MRTD) algorithm is presented in this paper by introducing afield  different media), there exists a more or leg$ hocsolution
expansion in terms of biorthogonal scaling and wavelet functions. within the traditional EDTD framework. However. the MRTD

Particular focus is placed on the Cohen—Daubechies—Feauveau . . D .
(CDF) biorthogonal-wavelet class, although the methodology is simultaneously addresses all of these issues, within a rigorous

appropriate for general biorthogonal wavelets. The computational and stable construct.
efficiency and numerical dispersion of the MRTD algorithm are In the MRTD algorithm, the fields are expanded in a wavelet
addressed, considering several CDF biothogonal wavelets, as wellpasjs [15], and Maxwell’s curl equations are discretized using
as other wavelet families. The advantages of the biorthogonal 5 ethod-of-moments procedure [16]. In the existing literature
MRTD method are presented, with emphasis on numerical issues. . . .
i _ ) " on MRTD, the basis functions of choice have been orthonormal
Index Terms—Biorthogonal wavelets, multiresolution analysis, \avelets from the Battle—Lemarie wavelet family [1]-[3], the
time-domain methods. :
Haar wavelet family [4]-[6], as well as, more recently, the
Daubechies scaling functions [17], [18]. The Battle—Lemarie
I. INTRODUCTION wavelets display good smoothness properties, but they have
HE multiresolution time-domain (MRTD) method hasthe d|sadvantage of infinite (though'expor.lentlally decaying)
. . . (lilpport. This means that many neighboring terms must be
been applied successfully to various electromagnetic-fiel

problems, such as microwave cavities and circuits [1], [2], élgcluded in the update equation at each node, and that there

. may be numerical issues associated with the truncation of the
well as scattering by general targets [4]6]. It has been ShO\MhTD coefficient sequence (as explained in Section Ill). The

that MRTD often yields important computational savings, S . . .
s . L . . aar wavelet family yields a simple algorithm. In fact, it can be

vis-a-visthe traditional finite-difference time-domain (FDTD) C !
shown that am-level Haar wavelet expansion is equivalent to

m?—:?Ohde[r71)_rEjggerIitnhif[)eu-tjisf?grrg:\(:(;zgsiﬂg;oensar?;\lj(rea?(gen devisthéa Yee FDTD scheme applied to a grid dftigher resolution.
9 ﬁnfortunately, the Haar wavelets lack smoothness. In this

within the FDTD framework [10], [11]. However, significant

) . . DL . per, we seek a balance between smoothness and reduced

issues are associated with their implementation for general’ : . )

. iy . spatial support. The former addresses numerical dispersion,

scattering problems, requiring hybrid approaches for treatmear{[d the latter yields algorithmic simplicity while avoidin

of interfaces between different media, as well as for absorbi ncation errorg 9 plicity 9

boundary conditions [11]. The MRTD achieves a multigri o . . .

X . . . . . _The remainder of this paper is organized as follows. The

structure by introducing denser discretization (scaling functions ". . T .

choice of the biorthogonal wavelet family is discussed in Sec-

and wavelets) in zones with relatively fast spatial field Vari.é%i_on II. We present the formulation of the biorthogonal MRTD

tion, while keeping a lower resolution representation (scalin ; . . . : .
: : ) . _—_ heme in Section lll, using scaling functions alone, with
functions alone) in slowly varying regions. Multigrid schemeS~ . . . . . .
s : onsideration of the stability criterion and dispersion curves.
have been studied in the context of FDTD [12]-[14], butin th . o . .
ection IV performs a similar analysis of the biorthogonal

Papet, there were difficulties in _formulqtmg a general Stab”.ltX/IRTD scheme, including a first level of wavelet functions.
criterion. By contrast, the multiresolution wavelet expansion ; . . .
: - . In Section V, we present a simple numerical example using

employed by MRTD provides a natural multigrid formulation, " * ! . :

J o L : Various versions of the MRTD algorithm. Conclusions are
for which rigorous stability criteria can be established. AnOthe(i{rawn in Section VI
feature of the MRTD algorithm is that it incorporates a sub-ce ’
methodology for treating the boundary between two dielectric
media, without having to introduce a staircase approximatioril. CHOOSING THEWAVELET FAMILY FOR FIELD EXPANSION
In this context, an analogous formulation could be devised
for the FDTD algorithm, in which the dielectric/magnetic
properties of the media are averaged inside the Yee cells %ﬁ
Summarizing, for each of the principal issues addressed
MRTD (higher order approximation of the fields, multigrid

The main objective of the MRTD method is a minimization
the computational resources required for a given accuracy
‘the electromagnetic solution. In this context, we would like
¥reduce the number of unknowns, by decreasing the number
of discretization points per wavelength, while simultaneously
keeping the numerical dispersion under control. A second and
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TABLE |
COURANT NUMBER AT THE STABILITY LIMIT FOR THE MRTD ALGORITHM IN ONE DIMENSION
CDF(22) | CDF(24) | CDF(26) | CDF@33) | Cubicspline
’ ’ ’ ’ Battle-Lemarie
Scaling only 0.7500 0.6844 0.6585 0.6844 0.6371
Scaling + One
Level Wavelet 0.6046 0.4831 0.4221 0.4815 0.2625

tary goal is mitigated if the associated algorithmic complexityonable number (usually 8-12 on each side) poses problems in
is simultaneously increased). terms of arithmetic precision by vitiating the properties of the

The first problem can be reformulated as follows: find avavelet functions imposed by design. Reference [19] draws at-
wavelet basis that minimizes the numerical dispersion err@ntion to implementation of wavelet systems in finite precision
of the MRTD algorithm for a given discretization rate. This isrithmetic, which can resultin nonzero moments and eventually
clearly related to how “good” an approximation of the fieldsonorthogonal systems.
can be obtained by considering a wavelet expansion limited to &Compactly supported orthonormal wavelets have been
certain number of levels. This is a typical problem encounterettained by Daubechies [15] by maximizing the number of
in data-compression techniques [15]. Let us consider tkanishing moments. The Cohen-Daubechies—Feauveau (CDF)
following general expansion of the functigh family of biorthogonal wavelets [15] uses spline functions as

dual wavelets); ,,, and maximizes the vanishing moments of
B 11, m fOr a given extent of their support. The main difference,
F=F Ytm) Pt m- (1) compared to Battle—Lemarie wavelets, is that the biorthogonal
l,m wavelets yield compact support. This means that the sequence
of MRTD coefficients required in the update equations is
rigorously finite (no truncation is needed).

In conclusion, the biorthogonal wavelet systems strike a
good balance between regularity and reduced support. While
the Battle—Lemarie wavelets are symmetric and smooth, they
must be truncated to achieve finite support.

Here,:;, m represents the wavelet function at leledhifted by
m /2! units, whereas ,,, is the dual of this function. They must
satisfy the following orthogonality relationship:

(t.ms bom) =80 =V) $(m=-m'). @
If 4 = 1/;z,m, then the wavelets are orthonormal. If the '|I- BIORTHOGONAL MRTD USING SCALING FUNCTIONS
basis functions are different, then the family of wavelets i MRTD Formulation
biorthogonal. Two common requirements used in designing
wavelet.systems are regularity aqd vam;hm_g moments.[lg ial-wavelet field expansion is similar to the derivation for
Regularity refers to the degree of differentiability of a funct|o% . .
7 . e orthogonal case [1], [6]. To keep the presentation simple,
whereas theith moment of the wavelet function is defined as . . ) ) X
" L we consider one-dimensional (1-D) wave propagation with
myi(n) = [ z"(x)dx. Suppose the functiofi is smooth and om - e
. ) . S ponentst, and H, propagating in thec-direction. The
we want to approximate it by truncating the expansion in ( Il wavelet expansion of the componefit can be written as
to a finite number of levels. It can then be shown [15] that, in
order to obtain a good approximation, we require that,

The derivation of the MRTD equations for a biorthog-

have as many vanishing moments as possible,jand be as nd - ol -

regular as possible. 2, 8) = Z Ey, mq’m(”?)JFZ B V() [ (D).
An additional requirement for the wavelet system is that the k,m=—co =0

expansion functions should have minimal support. As will be- ©)

come more evident in Sections Il and IV, this condition ad- - _ ) _
dresses the algorithmic computational complexity. If we restriEtere, we denplte b, the dual scaling function shifted by
ourselves to orthonormal wavelet systems, it can be shown tHAHS: alnd byw;,, thelth level dual-wavelet function displaced
regularity and minimal support are two conflicting requirement®y /2" units. For time discretization, we use rectangular pulses
[15]. The Battle—Lemarie family of wavelets, which are derivef*(t), Wherek represents the shiftin time units. A similar equa-
from B-spline functions [1], [15], have good regularity properI!on holds f_orHy, only the supports Qf the scalmg/wav_elet func-
ties (depending on the order of the spline functions used in dins are displaced half a unit relative . In this section, we
sign), but they have infinite support. This results, theoreticallfonsider expansion in terms of scaling functions alone as fol-
in an infinite number of MRTD terms in each update equatiorPWs:

Since the Battle—Lemarie functions display exponential decay, oo

the higher order MRTD coefficients also decay fast. Neverthe- E.(z, t) = Z E,‘fj ,,,,‘i?m(a:)hk(t). (4)
less, truncating the sequence of MRTD coefficients [1] to a rea- k, m——oo
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Fig. 1. Scaling and wavelet functions and their duals for several families Bfg. 1. (Continued) Scaling and wavelet functions and their duals for several
CDF biorthogonal wavelet systems. In all cases, the graphs are approximatitamsilies of CDF biorthogonal wavelet systems. In all cases, the graphs are
obtained by the cascade algorithm after eight iterations. (a) CDR). (b) approximations obtained by the cascade algorithm after eight iterations. (c)
CDF (2, 4). CDF (2, 6). (d) CDF(3, 3).

The method-of-moments procedure [16] is affected by testife formed with the nondual functions, on which we, therefore,
Maxwell's equations with the scaling functiords,,. The re- MPOS€ moment suppression.

sulting equations are The stability cri_terion for this algorithm was established in
[3] and can be written as
At & cAt 1
Hl?,rn :Hl?—l,nl—i_m Z a/([l’)(Eg),nl—l—i _Eg),rn—i—l—l) E < e (6)
= |a(2)]|
e 2
At K i i i
E1?+1,m :Eﬁm + Z afi) (Hl?,m-i—i—l _ Hl?,m—i) where ¢ is the _phase velocity. The_,- maximum \_/alues_ of
eAr £ (cAt)/(Az) required by a stable algorithm (in one dimension)

(5b) are given in Table | for different choices of the scaling func-
tions. In two or three dimensions, these values must be adjusted

wherea(i) = [ (0 1:(2))/(92)) ® s s2(x) da; Az and by factors ofl /v/2 and1/+/3, respectively [9].
At are the spatial and temporal steps, respectively. The number ) ) ,
na, also called the “stencil size,” equals half the number of t& Numerical Dispersion
nonzero coefficients in the MRTD scheme. Note that we differ- In analyzing the numerical dispersion of the MRTD schemes,
entiate with respect to the dual function and, therefore, smootke consider a discretized monochromatic plane wave propa-
ness (differentiability) is imposed on such. The inner produoggting in accord with the MRTD equations and study the phase
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error as compared with the continuous case. Following the prehere ¢

TABLE I
MRTD COEFFICIENTS FORVARIOUS WAVELET BASES (a) COEFFICIENTSa(¢). (b) COEFFICIENTSh(#)

Cubic spline
i CDF (2,2) CDF (2.4) CDF (2,6) CDF (3,3) Bzgi;fg;‘ft‘?e
truncated at 107
1 1.2291667 1.2918134 1.3110317 1.2918129 1.2918462
2 | -0.0937500 | -0.1371348 -0.1560124 -0.1371343 -0.1560761
3 0.0104167 | 0.0287617 0.0419962 0.0287618 0.0596391
4 0 -0.0034701 -0.0086543 -0.0034701 -0.0293099
5 0 0.0000080 0.0008308 0.0000080 0.0153716
6 0 0 0.0000109 0 -0.0081892
7 0 0 -0.0000000 0 0.0043788
8 0 0 0 0 -0.0023433
9 0 0 0 0 0.0012542
(@)
Cubic spline
i CDF (2,2) CDF (2,4) CDF (2,6) CDF (3,3) Bzgiiffggge
truncated at 107
1 1.4375000 1.6890090 1.8610039 1.6890090 2.4725388
2 0.0937500 | 0.1955818 0.2903309 0.1955818 0.9562282
3 | 00104167 | -0.0287622 -0.0426845 -0.0287618 0.1660587
4 0 0.0034701 0.0086545 0.0034701 0.0939244
5 0 -0.0000080 -0.0008308 -0.0000080 0.0031413
6 0 0 -0.0000109 0 0.0134936
7 0 0 0.0000000 0 -0.0028589
8 0 0 0 0 0.0027788
9 0 0 0 0 -0.0011295

(b)

= (cAt)/(Az) (the Courant number)y

cedure in [3], we obtain the following equation (for the 1-OAcontinuous)/(Adiscrete) (the ratio between the theoretical and
numerical wavelength), and; are the number of sampling
points per wavelength. Ideally, we should have- 1. We mea-
sure the phase error (in degrees per wavelengtB§@s: — 1),

@) wherew represents the solution of the nonlinear equation (7)
for a given discretization rate;.

case):



906 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 5, MAY 2001

TABLE Il (Continued)
MRTD COEFFICIENTS FORVARIOUS WAVELET BASES(C) COEFFICIENTSc(7). (d) COEFFICIENTSA(?)

Cubic spline

i | core2 | CDE@4 CDF (2,6) CDF 3,3) Bigi";ffj:i?e

truncated at 10°
1 | -0.1510417 | -0.1569410 | -0.1300804 0.2422510 -0.0465973
2 | 00833333 | 0.1363198 0.1482517 -0.3855128 0.0545394
3| -00052083 | -0.0443966 | -0.0742472 0.1597666 -0.0369996
4 0 0.0047841 0.0192157 -0.0178193 0.0205745
5 0 00003301 | -0.0026345 0.0013174 -0.0111530
6 0 0.0000008 0.0002887 -0.0000030 0.0059769
7 0 0 -0.0000146 0 -0.0032026
8 0 0 -0.0000002 0 0.0017141
9 0 0 0.0000000 0 -

(¢
Cubic spline

i | CDF@2) | CDF(Q4) CDE (2,6) CDF (3,3) Bingzgi?e

truncated at 10
1 | 00416667 | -0.0726900 | -0.0954514 | -0.0181721 -0.0465973
2 | 00208333 | 00364721 0.0468862 0.0272902 0.0545394
3 0 -0.0000856 |  0.0005564 -0.0091396 |  -0.0369996
4 0 0 -0.0000002 0.0000214 0.0205745
5 0 0 0 0 -0.0111530
6 0 0 0 0 0.0059769
7 0 0 0 0 -0.0032026
8 0 0 0 0 0.0017141
9 0 0 0 0 -

(d)

Inthe following, we consider a few families of CDF biorthog-struction and decomposition filters of the family [15], respec-
onal wavelet functions and study the dispersion errors assdoiely (they are also related to the support extent of the scaling
ated with their use in the MRTD algorithm. The results are al§anction ®,,, and the dual scaling functiof,,,, respectively).
compared to those obtained with cubic-spline Battle—Lemaiidots of the CDF families considered in this paper (including
wavelets and with the traditional Yee FDTD algorithm. For thecaling and first-level wavelet functions) are given in Fig. 1.
CDF wavelet families, we use the notations CRF, 3) [15], The scaling/wavelet functions in Fig. 1 were computed using the
where the integers andg are related to the lengths of the reconeascade algorithm [15]. The coefficients ) were computed by
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Fig. 2. Phase error (in degrees per wavelength) versus discretization ratefigy 4: Phase error (in degrees per wavelength) versus discretization rate for
MRTD schemes using expansion of the fields in terms of scaling function o RTD schemes using expansion of the fields in terms of scaling function only

(at low resolution). For the MRTD schemes, the Courant number=is0.23, t high resolution). For the MRTD schemes, the Courant numbge=ig).25,
for FDTD, the Courant number is = 0.6. 1-D propagation. The curves for for FDTD, the Courant number ig = 0.6. 1-D propagation. The curves for
CDF (2, 4) and CDF(3, 3) are on top of one another. CDF (2, 4) and CDF(3, 3) are on top of one another.
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Fig. 5. Phase error (in degrees per wavelength) versus discretization rate for
Fig. 3. Phase error (in degrees per wavelength) versus discretization rateM&TD schemes using expansion of the fields in terms of scaling function only
MRTD schemes using expansion of the fields in terms of scaling function ongt low resolution). For the MRTD schemes, the Courant number=s0.25,
(at low resolution). For the MRTD schemes, the Courant numbgess).1, for  for FDTD, the Courant number is= 0.6. 2-D propagation at 45 The curves
FDTD, the Courant number is= 0.6. 1-D propagation. The curves for CDF for CDF (2, 4) and CDF(3, 3) are on top of one another.
(2, 4) and CDF(3, 3) are on top of one another.

considered, we noticed that the phase error decreases gvhen

numerical differentiation/integration and are given in Table lls decreased (consistent with the results reported in [3]). How-
Notice that, in some cases, the functi@ng can be very rough ever, for the FDTD algorithm, the opposite is true. In the fol-
(we do not impose any smoothness condition on them, only mowing examples, we keep= 0.6 for all the FDTD dispersion
ment suppression) and, therefore, they must be discretized venyves. More details on the influence of the Courant number
finely in order to obtain sufficient precision in the numerical inen the FDTD dispersion curves can be found in [3]. In Fig. 2,
tegration (up to 20 levels of the cascade algorithm were used foe considered = 0.25 for the MRTD schemes (since the sta-
six to seven decimal places). On the other hand, we notice thdity limits are comparable for all MRTD schemes using scaling
the dual scaling/wavelet functions are piecewise smooth affidinction expansions, we can directly compare them at the same
therefore, the numerical differentiation is not a problem (act@ourant number). In Fig. 3, we lower the time step such that
ally it can be done in closed form for spline functions). q = 0.1 for the same schemes, and in Fig. 4, we plot the same

The dispersion curves for scaling-function field expansion aceirves as in Fig. 2, but display curves for higher valuegof
givenin Figs. 2-5, in which the phase error is depicted as a furfoumber of sample points per wavelength). The most striking
tion of the number of discretization points per wavelength. Asaspect of the dispersion curves for the Battle—Lemarie systemis
control, we plot the dispersion curves for the FDTD algorithrthat the error reaches a minimum and then increasegiasn-
on the same graphs. It is important to mention that the erraneased (we used a stencil size 9 for this MRTD scheme). This
are sensitive to the Courant numhger~or all MRTD schemes suggests that the error should increase at higher discretization
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rates and that we would never reach the exact solution, no mattases correspond to 2-D propagation along one of the Cartesian
how finely we discretize the fields. However, we attribute thiaxes).

anomaly to the truncation of the MRTD coefficient sequence

a(i). Actually, it is easy to see that, in order to converge to the, computational Complexity

exact solution ag\z — 0, we require ) ] ) ]
Another issue to be addressed is the number of floating-point

calculations involved in each update equation. If the stencil size

o of the MRTD algorithm is:,, using only scaling functions, then
Z a(i)(2i — 1) = 1. (8) in order to achieve a similar number of computations with the
i=1 Yee FDTD scheme for the same problem, we must reduce the

- - . . . . number of cells in one direction by a factor of in one di-
The finite precision arithmetic used in computing the coeffi- ension i two dimensions. an in three dimen-
cientsa(4) leads to an error in satisfying this relationship, ang! Vha » and/na

it can be shown that this error is directly related to the pha: Qns. Itis easy to see that the savings of the MRTD scheme

error in the limitAxz — 0. If we use a larger stencil size for the. ecome more Important as the number of spatial (_jlmensu_)ns
|samcreased. In the following, we make the comparisons with

Battle-Lemarie MRTD scheme, this error can be reduced aﬁ]g Yee scheme employing ten points per wavelength. Since
the shape of the curves looks more similar to the ones obtalqﬁe Battle_Lemarie scheme needs at least— 9, for this

for the other MRTD schemes [3]. In fact,_we notu_:ed t_hat thvevavelet choice, the MRTD algorithm becomes more efficient
phase error in the case of the MRTD algorithms using blortho(?{

onal wavelet expansion also does not converge exactly to zerd 1A FDTD (in terms of computational time) only in a three-di-

in_ . . . X o
the limit Az — 0 (due to finite numerical precision), howevermen&on"le (3-D) f:onﬂguranon. Increasing the stgncn siz€ for

: . the Battle—Lemarie scheme does not reduce the dispersion error
the errors are much smaller than in the Battle—Lemarie case;

For comparison, the error associated with the coefficient co r.'§,1|gn|f|cantly at low discretization rates [3], but it does increase

putation is on the order of 16, whereas the error associate&he computation time. We also tried to decrease the stencil size

with the coefficient sequence truncation (for the Battle—LemarE% ;huemzz;tégel_é‘izmjg; r‘:’cvt::rrgié? foL(J)r(,)rbl_thht:(:,‘-nroe;ueltsolgotririznasl,
scheme with stencil size 9) is on the order of 20 P y poar.

The behavior of the dispersion curves in the lidig — 0 MRTD scheme f_rom this pomt-of-w_ew appears to be the CDF
has theoretical value rather than a practical one since we 2e2) basis, which has a stencil size of = 3 and offers
Ease accuracy comparable with the other MRTD schemes. It

mainly interested in operating the MRTD algorithm at a dlsggp also be noticed that increasing the support of the scaling

cretization rate as low as possible. If we accept the phase erf . . - .
obtained for the FDTD scheme at ten points—per—wavelengnn.OI wav_elet functions n the CDF 1;amr:lles does ngt lead tlcc)js_lg-
{Hcant improvements in terms of phase error, but could in-

then we can use as few as three to five points-per-wavelen o oo . .

. ) . . rease the computation time significantly. The size of the time

in the MRTD algorithm, depending on the choice of the basi . . . : .
is also important in evaluating the total CPU time. For all

and on the Courant number. The best performance appears t . ; .

. : . . . D schemes, the accuracy is better as the time step is de-
provided by the cubic-spline Battle—Lemarie functions, at Ieasreased However. this increases the computational time nec
at this level of discretization. However, these curves were 0B ’ ) . ) P

. . . . essary to obtain the numerical solution. Therefore, a tradeoff
tained considering 1-D wave propagation. If we consider the .
: . . . must be achieved between the accuracy of the scheme and total
two-dimensional (2-D) case, the dispersion error depends on . ; ! .
. . number of time steps (notice that, inthe FDTD case, this tradeoff
the angle of propagation. In Fig. 5, we look at the phase er-

. .. .S not necessary because choosing the Courant number close to
rors for propagation at 45or the same parameters as in Fig.

One can notice that now, at about five points per waveleng ’e stability limit is nearly optimal).

the Battle—Lemarie scheme does not provide better accuracy

than the biorthogonal MRTD schgmes consid.ered. Another in- V. BIORTHOGONAL MRTD USING THE FIRST LEVEL OF
teresting fact about these curves is the reduction of the error for
the FDTD scheme at 45when a Courant number gf= 0.6 is
employed. In fact, it is well known that, for a Courant number In this section, we perform a similar error analysis of the
close to the stability limit¢ = 1/+/2 in two dimensions), the MRTD algorithm, considering an expansion of the fields
dispersion error of the Yee algorithm vanishes for propagatiam terms of scaling functions and a single level of wavelet
at 45 [9]. This discussion suggests that one set of curvesfanctions. The formulation depends on whether the wavelet
one angle and one Courant number do not completely charagctions (and their duals) are symmetric or antisymmetric
terize the error obtained in a complex scattering configuratiombout one-half (see Fig. 1). If the wavelets are symmetric (e.g.,
In the case of the Battle—Lemarie MRTD scheme, we expe€DF (2, 2), (2, 4), (2, 6), and cubic-spline Battle—Lemarie),
spurious errors caused by the truncation of the coefficient shen, at celin (in one dimension), the componeHt” occupies
quence. On the other hand, the performance of the biorthogotia same position as the componét, whereas¥ occupies
MRTD schemes should be more predictable since the precisibe same position ad® (we call the “position” of a field com-
errors involved in arithmetic computations are much smaller. Fionent, the coordinate where the scaling or wavelet function
nally, we note that all the above dispersion analyses were passociated with it peaks out). If the wavelets are antisymmetric
formed at Courant numbers that guarantee stability in 2-D cdie-g., CDF(3, 3)], then, at cellm, the componen&"¥ aligns
figurations for all MRTD and FDTD schemes (in fact, the 1-Bvith the component=®, whereasH" aligns with H®. The

WAVELET FUNCTIONS
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MRTD update equations in the symmetric case are (for 1-€zheme [1], which uses orthonormal basis functions. For the an-

propagation)

At

Hy ,, =H} —
k, m k—1,m + [JA.’L’

. <Z CL(L) (E;xi), m-i EE), rn—i-l—l)
i=1
+Z ( k, m+i Ek m— z)) (ga)

At

HY =HY —_—
k,m k—1,m + /JA.’L’

’ <i d(2) (El? mti EE), m—i)
=1
+Z ( "omtiot — B me z)) (9b)

At

EX o =ER +——
k+1,m k,m eAxr

(

Na

Z CL(L) (HE), m4+i—1 H;S), rnfi>

i=1

+E ) (L s = Hi )) (9¢)
By m = knl+“%%%
. <2 A (HE s — HE )
*Z" (s = HE z+1)> o)
whereb(i) = [ (0 45(2))/(0)) W y1/2(w) du, (i) =

I ((8¢1n,+,¢(a:N))/(aa:))@mH/Q(a:) dz (we havec(0) = 0) and
d(i) = [ ((0Pm+i(x))/(0x)) ¥y, 1/2(x) dx (We haved(0) =

tisymmetric case, the corresponding equations are

At

b (53]
Hk,rn :kal,rn + m

{

Na

S i) (ER s — EL i)

=1

+Z ( k,m4i + Ek m— z+1)> (103.)

q At
Hk m kIj—l,rn + m
ng
. <Z d(L) (El?, m-i + El(xi), rnfi-l—l)
=1
+ Z b ( k,m4+i k rn—i-l—l)) (1Ob)
At
Eg)—l—l m g),rn + E
: <Z CL('L) (Hl?, m+i—1 Hl(@I), rn,—i)
i=1
+ Z (Hk m—+ti—1 +Hk m— z)) (1OC)
At
Ek+1 m _Ek m + E

ng

> @) (H i + HE )

=1

+Z ) (B pics = B )) aod)

where the coefficient$(i), ¢(¢), andd(¢) have the same ex-
pressions as above. Their values are listed in Table Il for all the
wavelet families considered above.

The stability criterion can be written as (11), shown at the
bottom of this page [3], in which = max(n,, ns). The max-
imum values of cAt)/(Az) required by a stable algorithm (in

0). Notice that we have dropped the index zero indicating tlmme dimension) are given in Table .

wavelet level. For the biorthogonal MRTD schemesdfigand
d(¢) coefficient have different values, unlike the Battle-Lemari

To analyze the dispersion properties of the MRTD scheme
asing one level of wavelets, we plot similar phase error graphs

V2

(11)

<Z |a<z'>|> + <Z |b<z'>|>

+ 23 DI 140

n

+ <§;Ia(t) +b(i)l> J <

1=

> la(i) = b(i

) 4 3 40

1
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versus the discretization rate, as discussed in the previous s ; core2)
tion. The dispersion relationship for the numerical MRTD solu ; | ‘
- , - . ——CDF(24
tion of Maxwell's equations can be written as coEes
-------- CDF (2,6)
2 %
1- (33 + 57 + scsd) + (sasb - scsd) =0 @2 g N T CDF(3.3)
3 —u— Battle-Lemarie
where 5 o
o
N Q
N T, .. 3
Z a(i) sin [—(2% - 1)} £ 0
‘ n
=1
Sq =q° —7g (13a)
sin —
n
L g -3 ' ‘ ‘
Z b(i) sin |:—(2L - 1)} 2 4 6 8 10
i=1 m Points-per-wavelength
Sp =4 . g (13b)
Sin e Fig. 6. Phase error (in degrees per wavelength) versus discretization rate for
! MRTD schemes using expansion of the fields in terms of scaling and one level
ne . — wavelet functions. For all schemes, the Courant number is 0.25. 1-D
Z c(4) e D propagation. The curves for CDR, 4) and CDF(3, 3) are on top of one
— cos \ 1y another.
1=
S =q —g (13c)
sin — 12 ‘
ny { ——CDF(2.2)
Z d( sin 7ru2[ 10 ——CDF(24)
‘_1 cos \ ny - CDFQ26) |
sq=q= —7g . (13d) o N\ oFGH |
St n_l —-—Banle-uinge%

In the numerators of. and s,;, we take sine for symmetric
wavelet systems and cosine for antisymmetric wavelet syster
The graphs in Fig. 6 were obtained fpe 0.25 (which insures
that all schemes are stable) and the same families of wavel
as in the previous sections. In theory, by introducing a level « 2 e T
wavelets, the resolution of the MRTD schemes should doub!
However, the curves in Fig. 6 show a modest reduction in tt ©
phase error for the Battle-Lemarie MRTD scheme (stencil si:
9) when wavelets are considered, as compared to the case where
the expansion was provided by scaling functions only. One gxg. 7. Phase error (in degrees per wavelength) versus discretization rate for
planation for this result can be again provided by the truncatiM'IQTD schemes using expansion of the fields in terms of scaling and one level
o . wavelet functions. For all schemes, the Courant number is 95% of the stability
of the MRTD coefficient sequence. However, we conjectulighit. 1-D propagation. The curves for CD, 4) and CDF(3, 3) are on top
that the principal reason for the small difference between theone another.
two Battle—-Lemarie MRTD schemes (one using scaling func-
tions only and the other using scaling plus first-level wavelétis case, all MRTD schemes have the same time step. The
functions), when they both use the same Courant numbergisphs in this figure clearly show that, for the same time step,
the fact that, in the second case, we operate much closethe biorthogonal schemes have lower numerical dispersion than
the stability limit (see Table I). The curves in Fig. 6 indicatethe Battle—Lemarie scheme.
against expectations, that the performance decreases as thée stencil sizes for the coefficient sequene@s, b(¢), c(%),
order of the wavelet system increases. However, we can explaimd d(¢) are given in Table Ill. Once again, the biorthogonal
this by taking into account that the numerical dispersion errtfRTD schemes with low-order support, e.g., COE 2) and
is also a function of the Courant number. One can notice th@&DF (2, 4), are the most efficient in terms of the number of
e.g., in the Battle—Lemarie schemg,= 0.25 is very close computations (while providing better dispersion performance
to the stability limit, whereas for CDK2, 2), this value is than the Battle—Lemarie basis for a similar Courant number). In
well below the stability limit of the scheme. As mentioned irthis case, where one scaling and one level wavelet functions are
Section lll, the errors decrease wighIn Fig. 7, we consider employed, the number of calculations in the update equation for
the same dispersion curves, but operate all MRTD scheme®ae field componentis about, +n; +n. +nq4 times larger than
Courant numbers equal to 95% of their stability limits. Now ththe ones required by FDTD. Again, the savings of the MRTD
dispersion performances of the schemes are as expected @lggorithm increase with the number of spatial dimensions. We
the higher order schemes offer better performance). Howevanpuld also mention that the differences in the Courant number
the comparison we make in Fig. 6 is meaningful because, for the schemes using scaling plus one level wavelet functions

Phase error (degrees)
[*)

Points-per-wavelength
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TABLE Il
STENCIL SIZES FORDIFFERENTMRTD SCHEMES
Cubic spline
Battle-Lemarie
CDF (2,2) CDF (2,4) CDF (2,6) CDF (3,3) coefficients
truncated at 107
N 3 5 7 5 9
np 3 5 7 5 9
ne 3 6 9 6 8
ng 2 3 4 4 8
TABLE IV
RESONANT FREQUENCIES FOR ANAIR-FILLED METALLIC CAVITY (ALL FREQUENCIES INMEGAHERT2)
S-MRTD W-MRTD
Analylic =T e F [ CDF | Batle- | CDE | CDF | CDF | Batle- | T010
2,2) 2,4) (2,6) | Lemarie | (2,2) 2,4) (2,6) | Lemarie
150.00 | 150.11 | 150.10 | 150.11 | 150.22 | 150.01 | 150.01 | 150.01 | 150.14 | 149.60
167.71 | 167.87 | 167.85 | 167.86 | 168.14 | 167.72 | 167.71 | 167.73 | 168.01 | 167.43
27042 | 271.11 | 271.05 | 271.03 | 270.79 | 270.50 | 270.51 | 270.51 | 270.25 | 269.63
300.00 | 301.12 | 300.92 | 300.88 | 300.66 | 300.05 | 300.15 | 300.15 | 299.92 | 296.81

are significant, as one compares, e.g., the CBFR2) scheme uniformly throughout the whole computational domain. The
with the Battle—Lemarie scheme (see Table I). This means thAagttle—Lemarie MRTD scheme uses a stencil size 9 (as given
in the former algorithm, we can choose a time step that is mareTable 1ll). We also implemented the same problem with the
than double the one used by the latter scheme, and still maintgee FDTD algorithm. The Courant numbers were: 0.42 for
stability. However, increasing the time step adversely affects tSeMRTD, ¢ = 0.17 for W-MRTD (same for all wavelet bases),
accuracy of the algorithm (compare Figs. 6 and 7). Finally, vandq = 0.6 for FDTD. We considered four resonant frequen-
note that, when using scaling functions and wavelets (heregias, which were obtained either in TE or TM polarizations.
single wavelet level), the MRTD also has the added benefit @fe chose a relatively high discretization rate in order to have
multiresolution. In this context, scaling functions alone can teenumber of cells larger than the stencil size of any scheme in
used in regions in which the fields vary relatively slowly, witreach direction. In this manner, only one image of the cavity is
wavelets added locally in regions of fast field variation. required at each metallic wall in order to enforce the boundary
conditions. The numerical results are given in Table IV.

Based on these results, we can conclude that all MRTD
schemes provide good accuracy in measuring the resonant

To address implementation of the MRTD with CDF biorthogfrequencies of the cavity, and they all perform better than
onal wavelets, we consider a simple electromagnetic probleRDTD. The differences between the various schemes are
i.e., studying the resonant frequencies of an air-filled metallgnall—some model the higher frequencies more accurately,
cavity, in a manner similar to the example in [1]. We considereghereas others do better on the lower frequencies. As expected,
a 2-D cavity of 1 mx 2 m (with perfectly conducting walls) adding one level of wavelets resulted in improved precision.
discretized with a grid step oz = 0.1 m for all versions of However, one should be aware that the Courant number for
FDTD/MRTD models. We performed simulations using th®/-MRTD is different from that used by the S-MRTD (the time
MRTD algorithm based on scaling functions alone (S-MRTBteps are different). Also, based on the discussion in the pre-
with the notations in [1]) and the same algorithm based afious section, the numerical results confirm that, for the same
scaling and first level wavelet functions (W-MRTD). In theCourant number, the CDE2, 2) W-MRTD scheme provides
latter case, we employed the full expansion in both directiorthe most accurate results. We emphasize that the point of this

V. NUMERICAL EXAMPLE
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numerical experiment is simply to underscore that the MRTD [9] A. Taflove, Computational Electrodynamics: The Finite-Difference
is implemented easily, using either CDF biorthogonal wavelets,  Time-Domain Methad Norwood, MA: Artech House, 1995.

h h | Battle-L . | | icul . [10] P. G. Petropoulos, “Phase error control for FDTD methods of second
or the orthogonal Battle-Lemarie wavelets. In particular, In and fourth order accuracy|lEEE Trans. Antennas Propagatol. 42,

these computations, we have not focused on the reduced spatial pp. 859-862, June 1994.

discretization afforded by the various MRTD schemes, thidlll M. F. Hadi and M. Piket-May, “A modified FDTD (2,4) scheme for
modeling electrically large structures with high-phase accurdBfE

issue having been addressed in the dispersion studies. Trans. Antenna Propaganol. 45, pp. 254-264, Feb, 1997.
[12] M. W. Chevalier, R. J. Luebbers, and V. P. Cable, “FDTD local grid
VI]. CONCLUSIONS with material traverse,TEEE Trans. Antennas Propagatol. 45, pp.

411-421, Mar. 1997.
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: o : subgridding algorithm for FDTD,IEEE Trans. Antennas Propagat.
biorthogonal wavelet families. We chose the CDF biorthogonal |-/ 45, pp. 422429, Mar. 1997.
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. . ] J. Gotze, J. E. Odegard, P. Rieder, and C. S. Burrus, “Approximate
wavelet functions. The biorthogonal wavelet systems do no moments and regularity of efficiently implemented orthogonal wavelet

present this problem, due to their compact support, although  transforms,”irProc. IEEE Int. Circuits Syst. Symp. Digday 1996, pp.
high precision is required in the MRTD coefficient calculation 405-408.

in order to minimize arithmetic inaccuracies. Also, the com-

pact support of the biorthogonal wavelets reduces the total CPU

time relative to the Battle-Lemarie wavelets for similar levels of . Dogaru (S'96-M'99) was born in Bucharest, Romania, in 1966. He re-

phase error. ceived the Engineering degree from the Polytechnic University of Bucharest,
Bucharest, Romania, in 1990, the M.S. degree in electrical engineering and the
REEERENCES E\t]e:?/ degree from Duke University, Durham, NC, in 1997 and 1999, respec-
[1] M. Krumpholz and L. Katehi, “MRTD: New time-domain schemes From 1992 to 1995, he has held different engineering positions in the mag-
based on multiresolution analysisEEE Trans. Microwave Theory netic recording industry. He is currently a Research Associate at Duke Univer-
Tech, vol. 44, pp. 555-571, Apr. 1996. sity, where his main research interests are in electromagnetic wave theory, com-
[2] E. M. Tentzeris, R. L. Robertson, and L. Katehi, “PML absorbingputational electromagnetics, rough surface scattering and radar-related signal
boundary conditions for the characterization of open microwave circyirocessing.
components using multiresolution time domain techniques (MRTD),”
IEEE Trans. Antennas Propagatol. 47, pp. 1709-1716, Nov. 1999.
[3] E.M. Tentzeris, R. L. Robertson, J. Harvey, and L. Katehi, “Stability and
dispersion analysis of Battle—Lemarie based MRTD schem&&£E
Trans. Microwave Theory Teghvol. 47, pp. 1004-1013, July 1999.  Lawrence Carin (S'85-M'85-SM'96—F'01) was born March 25, 1963, in
[4] T. Dogaru and L. Carin, “Application of multiresolution time-domainWashington, DC. He received the B.S., M.S., and Ph.D. degrees in electrical
schemes to two-dimensional electromagnetic scattering problemsyigineering from the University of Maryland at College Park, in 1985, 1986,
IEEE Trans. Antennas Propagasubmitted for publication. and 1989, respectively.
[5] —, “Multiresolution time-domain analysis of scattering from a rough In 1989, he joined the Electrical Engineering Department, Polytechnic Uni-
dielectric surface,Radio Sci.vol. 35, pp. 1279-1292, Nov.—Dec. 2000.versity, Brooklyn, NY, as an Assistant Professor and, in 1994, became an As-
[6] T. Dogaru, “Modeling and signal processing for electromagnetic sulsociate Professor. In September 1995, he joined the Electrical Engineering De-
surface sensing,” Ph.D. dissertation, Dept. Elect. Comput. Eng., Dugartment, Duke University, Durham, NC, where he is currently a Professor. His
Univ., Durham, NC, 1999. current research interests include short-pulse scattering, subsurface sensing, and
[7] K. S. Yee, “Numerical solution of initial boundary value problems in-wave-based signal processing.
volving Maxwell’'s equations in isotropic medidEEE Trans. Antennas  Dr. Carin is a member of Tau Beta Pi and Eta Kappa Nu. He is the principal
Propagat, vol. AP-14, pp. 302-307, May 1966. investigator of a Multidisciplinary University Research Initiative (MURI) on
[8] K. S. Kunz and R. J. Luebber3he Finite Difference Time Domain demining. He is currently an associate editor for the IEEANSACTIONS ON
Method for Electromagnetics Boca Raton, FL: CRC Press, 1993. ANTENNAS AND PROPAGATION.



	MTT023
	Return to Contents


