
902 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 5, MAY 2001

Multiresolution Time-Domain Using CDF
Biorthogonal Wavelets

Traian Dogaru, Member, IEEE,and Lawrence Carin, Fellow, IEEE

Abstract—A new approach to the multiresolution time-domain
(MRTD) algorithm is presented in this paper by introducing a field
expansion in terms of biorthogonal scaling and wavelet functions.
Particular focus is placed on the Cohen–Daubechies–Feauveau
(CDF) biorthogonal-wavelet class, although the methodology is
appropriate for general biorthogonal wavelets. The computational
efficiency and numerical dispersion of the MRTD algorithm are
addressed, considering several CDF biothogonal wavelets, as well
as other wavelet families. The advantages of the biorthogonal
MRTD method are presented, with emphasis on numerical issues.

Index Terms—Biorthogonal wavelets, multiresolution analysis,
time-domain methods.

I. INTRODUCTION

T HE multiresolution time-domain (MRTD) method has
been applied successfully to various electromagnetic-field

problems, such as microwave cavities and circuits [1], [2], as
well as scattering by general targets [4]–[6]. It has been shown
that MRTD often yields important computational savings,
vis-à-visthe traditional finite-difference time-domain (FDTD)
method [7]–[9] without sacrificing solution accuracy.

Higher order finite-difference schemes have been devised
within the FDTD framework [10], [11]. However, significant
issues are associated with their implementation for general
scattering problems, requiring hybrid approaches for treatment
of interfaces between different media, as well as for absorbing
boundary conditions [11]. The MRTD achieves a multigrid
structure by introducing denser discretization (scaling functions
and wavelets) in zones with relatively fast spatial field varia-
tion, while keeping a lower resolution representation (scaling
functions alone) in slowly varying regions. Multigrid schemes
have been studied in the context of FDTD [12]–[14], but in that
paper, there were difficulties in formulating a general stability
criterion. By contrast, the multiresolution wavelet expansion
employed by MRTD provides a natural multigrid formulation,
for which rigorous stability criteria can be established. Another
feature of the MRTD algorithm is that it incorporates a sub-cell
methodology for treating the boundary between two dielectric
media, without having to introduce a staircase approximation.
In this context, an analogous formulation could be devised
for the FDTD algorithm, in which the dielectric/magnetic
properties of the media are averaged inside the Yee cells [9].
Summarizing, for each of the principal issues addressed by
MRTD (higher order approximation of the fields, multigrid
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structure, and accurate treatment of the interface between
different media), there exists a more or lessad hocsolution
within the traditional FDTD framework. However, the MRTD
simultaneously addresses all of these issues, within a rigorous
and stable construct.

In the MRTD algorithm, the fields are expanded in a wavelet
basis [15], and Maxwell’s curl equations are discretized using
a method-of-moments procedure [16]. In the existing literature
on MRTD, the basis functions of choice have been orthonormal
wavelets from the Battle–Lemarie wavelet family [1]–[3], the
Haar wavelet family [4]–[6], as well as, more recently, the
Daubechies scaling functions [17], [18]. The Battle–Lemarie
wavelets display good smoothness properties, but they have
the disadvantage of infinite (though exponentially decaying)
support. This means that many neighboring terms must be
included in the update equation at each node, and that there
may be numerical issues associated with the truncation of the
MRTD coefficient sequence (as explained in Section III). The
Haar wavelet family yields a simple algorithm. In fact, it can be
shown that an -level Haar wavelet expansion is equivalent to
the Yee FDTD scheme applied to a grid of 2higher resolution.
Unfortunately, the Haar wavelets lack smoothness. In this
paper, we seek a balance between smoothness and reduced
spatial support. The former addresses numerical dispersion,
and the latter yields algorithmic simplicity while avoiding
truncation errors.

The remainder of this paper is organized as follows. The
choice of the biorthogonal wavelet family is discussed in Sec-
tion II. We present the formulation of the biorthogonal MRTD
scheme in Section III, using scaling functions alone, with
consideration of the stability criterion and dispersion curves.
Section IV performs a similar analysis of the biorthogonal
MRTD scheme, including a first level of wavelet functions.
In Section V, we present a simple numerical example using
various versions of the MRTD algorithm. Conclusions are
drawn in Section VI.

II. CHOOSING THEWAVELET FAMILY FOR FIELD EXPANSION

The main objective of the MRTD method is a minimization
of the computational resources required for a given accuracy
of the electromagnetic solution. In this context, we would like
to reduce the number of unknowns, by decreasing the number
of discretization points per wavelength, while simultaneously
keeping the numerical dispersion under control. A second and
distinct issue involves reduction of the total number of computa-
tions required by the algorithm (i.e., while it is generally desir-
able to reduce the discretization rate per wavelength, this salu-

0018–9480/01$10.00 © 2001 IEEE



DOGARU AND CARIN: MRTD USING CDF BIORTHOGONAL WAVELETS 903

TABLE I
COURANT NUMBER AT THE STABILITY LIMIT FOR THE MRTD ALGORITHM IN ONE DIMENSION

tary goal is mitigated if the associated algorithmic complexity
is simultaneously increased).

The first problem can be reformulated as follows: find a
wavelet basis that minimizes the numerical dispersion error
of the MRTD algorithm for a given discretization rate. This is
clearly related to how “good” an approximation of the fields
can be obtained by considering a wavelet expansion limited to a
certain number of levels. This is a typical problem encountered
in data-compression techniques [15]. Let us consider the
following general expansion of the function:

(1)

Here, represents the wavelet function at level, shifted by
units, whereas is the dual of this function. They must

satisfy the following orthogonality relationship:

(2)

If , then the wavelets are orthonormal. If the
basis functions are different, then the family of wavelets is
biorthogonal. Two common requirements used in designing
wavelet systems are regularity and vanishing moments [15].
Regularity refers to the degree of differentiability of a function,
whereas the th moment of the wavelet function is defined as

. Suppose the function is smooth and
we want to approximate it by truncating the expansion in (1)
to a finite number of levels. It can then be shown [15] that, in
order to obtain a good approximation, we require that
have as many vanishing moments as possible, and be as
regular as possible.

An additional requirement for the wavelet system is that the
expansion functions should have minimal support. As will be-
come more evident in Sections III and IV, this condition ad-
dresses the algorithmic computational complexity. If we restrict
ourselves to orthonormal wavelet systems, it can be shown that
regularity and minimal support are two conflicting requirements
[15]. The Battle–Lemarie family of wavelets, which are derived
from -spline functions [1], [15], have good regularity proper-
ties (depending on the order of the spline functions used in de-
sign), but they have infinite support. This results, theoretically,
in an infinite number of MRTD terms in each update equation.
Since the Battle–Lemarie functions display exponential decay,
the higher order MRTD coefficients also decay fast. Neverthe-
less, truncating the sequence of MRTD coefficients [1] to a rea-

sonable number (usually 8–12 on each side) poses problems in
terms of arithmetic precision by vitiating the properties of the
wavelet functions imposed by design. Reference [19] draws at-
tention to implementation of wavelet systems in finite precision
arithmetic, which can result in nonzero moments and eventually
nonorthogonal systems.

Compactly supported orthonormal wavelets have been
obtained by Daubechies [15] by maximizing the number of
vanishing moments. The Cohen–Daubechies–Feauveau (CDF)
family of biorthogonal wavelets [15] uses spline functions as
dual wavelets and maximizes the vanishing moments of

for a given extent of their support. The main difference,
compared to Battle–Lemarie wavelets, is that the biorthogonal
wavelets yield compact support. This means that the sequence
of MRTD coefficients required in the update equations is
rigorously finite (no truncation is needed).

In conclusion, the biorthogonal wavelet systems strike a
good balance between regularity and reduced support. While
the Battle–Lemarie wavelets are symmetric and smooth, they
must be truncated to achieve finite support.

III. B IORTHOGONAL MRTD USING SCALING FUNCTIONS

A. MRTD Formulation

The derivation of the MRTD equations for a biorthog-
onal-wavelet field expansion is similar to the derivation for
the orthogonal case [1], [6]. To keep the presentation simple,
we consider one-dimensional (1-D) wave propagation with
components and propagating in the -direction. The
full wavelet expansion of the component can be written as

(3)

Here, we denote by the dual scaling function shifted by
units, and by the th level dual-wavelet function displaced
by units. For time discretization, we use rectangular pulses

, where represents the shift in time units. A similar equa-
tion holds for , only the supports of the scaling/wavelet func-
tions are displaced half a unit relative to. In this section, we
consider expansion in terms of scaling functions alone as fol-
lows:

(4)



904 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 5, MAY 2001

Fig. 1. Scaling and wavelet functions and their duals for several families of
CDF biorthogonal wavelet systems. In all cases, the graphs are approximations
obtained by the cascade algorithm after eight iterations. (a) CDF(2; 2). (b)
CDF (2; 4).

The method-of-moments procedure [16] is affected by testing
Maxwell’s equations with the scaling functions . The re-
sulting equations are

(5a)

(5b)

where ; and
are the spatial and temporal steps, respectively. The number

, also called the “stencil size,” equals half the number of the
nonzero coefficients in the MRTD scheme. Note that we differ-
entiate with respect to the dual function and, therefore, smooth-
ness (differentiability) is imposed on such. The inner products

Fig. 1. (Continued). Scaling and wavelet functions and their duals for several
families of CDF biorthogonal wavelet systems. In all cases, the graphs are
approximations obtained by the cascade algorithm after eight iterations. (c)
CDF (2; 6). (d) CDF(3; 3).

are formed with the nondual functions, on which we, therefore,
impose moment suppression.

The stability criterion for this algorithm was established in
[3] and can be written as

(6)

where is the phase velocity. The maximum values of
required by a stable algorithm (in one dimension)

are given in Table I for different choices of the scaling func-
tions. In two or three dimensions, these values must be adjusted
by factors of and , respectively [9].

B. Numerical Dispersion

In analyzing the numerical dispersion of the MRTD schemes,
we consider a discretized monochromatic plane wave propa-
gating in accord with the MRTD equations and study the phase
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TABLE II
MRTD COEFFICIENTS FORVARIOUS WAVELET BASES. (a) COEFFICIENTSa(i). (b) COEFFICIENTSb(i)

(a)

(b)

error as compared with the continuous case. Following the pro-
cedure in [3], we obtain the following equation (for the 1-D
case):

(7)

where (the Courant number),
(the ratio between the theoretical and

numerical wavelength), and are the number of sampling
points per wavelength. Ideally, we should have . We mea-
sure the phase error (in degrees per wavelength) as ,
where represents the solution of the nonlinear equation (7)
for a given discretization rate .
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TABLE II (Continued).
MRTD COEFFICIENTS FORVARIOUS WAVELET BASES(c) COEFFICIENTSc(i). (d) COEFFICIENTSd(i)

(c)

(d)

In the following, we consider a few families of CDF biorthog-
onal wavelet functions and study the dispersion errors associ-
ated with their use in the MRTD algorithm. The results are also
compared to those obtained with cubic-spline Battle–Lemarie
wavelets and with the traditional Yee FDTD algorithm. For the
CDF wavelet families, we use the notations CDF [15],
where the integers and are related to the lengths of the recon-

struction and decomposition filters of the family [15], respec-
tively (they are also related to the support extent of the scaling
function and the dual scaling function , respectively).
Plots of the CDF families considered in this paper (including
scaling and first-level wavelet functions) are given in Fig. 1.
The scaling/wavelet functions in Fig. 1 were computed using the
cascade algorithm [15]. The coefficients were computed by
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Fig. 2. Phase error (in degrees per wavelength) versus discretization rate for
MRTD schemes using expansion of the fields in terms of scaling function only
(at low resolution). For the MRTD schemes, the Courant number isq = 0:25,
for FDTD, the Courant number isq = 0:6. 1-D propagation. The curves for
CDF (2; 4) and CDF(3; 3) are on top of one another.

Fig. 3. Phase error (in degrees per wavelength) versus discretization rate for
MRTD schemes using expansion of the fields in terms of scaling function only
(at low resolution). For the MRTD schemes, the Courant number isq = 0:1, for
FDTD, the Courant number isq = 0:6. 1-D propagation. The curves for CDF
(2; 4) and CDF(3; 3) are on top of one another.

numerical differentiation/integration and are given in Table II.
Notice that, in some cases, the functions can be very rough
(we do not impose any smoothness condition on them, only mo-
ment suppression) and, therefore, they must be discretized very
finely in order to obtain sufficient precision in the numerical in-
tegration (up to 20 levels of the cascade algorithm were used for
six to seven decimal places). On the other hand, we notice that
the dual scaling/wavelet functions are piecewise smooth and,
therefore, the numerical differentiation is not a problem (actu-
ally it can be done in closed form for spline functions).

The dispersion curves for scaling-function field expansion are
given in Figs. 2–5, in which the phase error is depicted as a func-
tion of the number of discretization points per wavelength. As a
control, we plot the dispersion curves for the FDTD algorithm
on the same graphs. It is important to mention that the errors
are sensitive to the Courant number. For all MRTD schemes

Fig. 4. Phase error (in degrees per wavelength) versus discretization rate for
MRTD schemes using expansion of the fields in terms of scaling function only
(at high resolution). For the MRTD schemes, the Courant number isq = 0:25,
for FDTD, the Courant number isq = 0:6. 1-D propagation. The curves for
CDF (2; 4) and CDF(3; 3) are on top of one another.

Fig. 5. Phase error (in degrees per wavelength) versus discretization rate for
MRTD schemes using expansion of the fields in terms of scaling function only
(at low resolution). For the MRTD schemes, the Courant number isq = 0:25,
for FDTD, the Courant number isq = 0:6. 2-D propagation at 45�. The curves
for CDF (2; 4) and CDF(3; 3) are on top of one another.

considered, we noticed that the phase error decreases when
is decreased (consistent with the results reported in [3]). How-
ever, for the FDTD algorithm, the opposite is true. In the fol-
lowing examples, we keep for all the FDTD dispersion
curves. More details on the influence of the Courant number
on the FDTD dispersion curves can be found in [3]. In Fig. 2,
we considered for the MRTD schemes (since the sta-
bility limits are comparable for all MRTD schemes using scaling
function expansions, we can directly compare them at the same
Courant number). In Fig. 3, we lower the time step such that

for the same schemes, and in Fig. 4, we plot the same
curves as in Fig. 2, but display curves for higher values of
(number of sample points per wavelength). The most striking
aspect of the dispersion curves for the Battle–Lemarie system is
that the error reaches a minimum and then increases asis in-
creased (we used a stencil size 9 for this MRTD scheme). This
suggests that the error should increase at higher discretization
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rates and that we would never reach the exact solution, no matter
how finely we discretize the fields. However, we attribute this
anomaly to the truncation of the MRTD coefficient sequence

. Actually, it is easy to see that, in order to converge to the
exact solution as , we require

(8)

The finite precision arithmetic used in computing the coeffi-
cients leads to an error in satisfying this relationship, and
it can be shown that this error is directly related to the phase
error in the limit . If we use a larger stencil size for the
Battle–Lemarie MRTD scheme, this error can be reduced and
the shape of the curves looks more similar to the ones obtained
for the other MRTD schemes [3]. In fact, we noticed that the
phase error in the case of the MRTD algorithms using biorthog-
onal wavelet expansion also does not converge exactly to zero in
the limit (due to finite numerical precision), however,
the errors are much smaller than in the Battle–Lemarie case.
For comparison, the error associated with the coefficient com-
putation is on the order of 10 , whereas the error associated
with the coefficient sequence truncation (for the Battle–Lemarie
scheme with stencil size 9) is on the order of 10.

The behavior of the dispersion curves in the limit
has theoretical value rather than a practical one since we are
mainly interested in operating the MRTD algorithm at a dis-
cretization rate as low as possible. If we accept the phase error
obtained for the FDTD scheme at ten points-per-wavelength,
then we can use as few as three to five points-per-wavelength
in the MRTD algorithm, depending on the choice of the basis
and on the Courant number. The best performance appears to be
provided by the cubic-spline Battle–Lemarie functions, at least
at this level of discretization. However, these curves were ob-
tained considering 1-D wave propagation. If we consider the
two-dimensional (2-D) case, the dispersion error depends on
the angle of propagation. In Fig. 5, we look at the phase er-
rors for propagation at 45for the same parameters as in Fig. 1.
One can notice that now, at about five points per wavelength,
the Battle–Lemarie scheme does not provide better accuracy
than the biorthogonal MRTD schemes considered. Another in-
teresting fact about these curves is the reduction of the error for
the FDTD scheme at 45, when a Courant number of is
employed. In fact, it is well known that, for a Courant number
close to the stability limit ( in two dimensions), the
dispersion error of the Yee algorithm vanishes for propagation
at 45 [9]. This discussion suggests that one set of curves at
one angle and one Courant number do not completely charac-
terize the error obtained in a complex scattering configuration.
In the case of the Battle–Lemarie MRTD scheme, we expect
spurious errors caused by the truncation of the coefficient se-
quence. On the other hand, the performance of the biorthogonal
MRTD schemes should be more predictable since the precision
errors involved in arithmetic computations are much smaller. Fi-
nally, we note that all the above dispersion analyses were per-
formed at Courant numbers that guarantee stability in 2-D con-
figurations for all MRTD and FDTD schemes (in fact, the 1-D

cases correspond to 2-D propagation along one of the Cartesian
axes).

C. Computational Complexity

Another issue to be addressed is the number of floating-point
calculations involved in each update equation. If the stencil size
of the MRTD algorithm is , using only scaling functions, then
in order to achieve a similar number of computations with the
Yee FDTD scheme for the same problem, we must reduce the
number of cells in one direction by a factor of in one di-
mension, in two dimensions, and in three dimen-
sions. It is easy to see that the savings of the MRTD scheme
become more important as the number of spatial dimensions
is increased. In the following, we make the comparisons with
the Yee scheme employing ten points per wavelength. Since
the Battle–Lemarie scheme needs at least , for this
wavelet choice, the MRTD algorithm becomes more efficient
than FDTD (in terms of computational time) only in a three-di-
mensional (3-D) configuration. Increasing the stencil size for
the Battle–Lemarie scheme does not reduce the dispersion error
significantly at low discretization rates [3], but it does increase
the computation time. We also tried to decrease the stencil size
of the Battle–Lemarie scheme to four, but the results in terms
of numerical dispersion were very poor. The most economical
MRTD scheme from this point-of-view appears to be the CDF

basis, which has a stencil size of and offers
phase accuracy comparable with the other MRTD schemes. It
can also be noticed that increasing the support of the scaling
and wavelet functions in the CDF families does not lead to sig-
nificant improvements in terms of phase error, but could in-
crease the computation time significantly. The size of the time
step is also important in evaluating the total CPU time. For all
MRTD schemes, the accuracy is better as the time step is de-
creased. However, this increases the computational time nec-
essary to obtain the numerical solution. Therefore, a tradeoff
must be achieved between the accuracy of the scheme and total
number of time steps (notice that, in the FDTD case, this tradeoff
is not necessary because choosing the Courant number close to
the stability limit is nearly optimal).

IV. BIORTHOGONAL MRTD USING THE FIRST LEVEL OF

WAVELET FUNCTIONS

In this section, we perform a similar error analysis of the
MRTD algorithm, considering an expansion of the fields
in terms of scaling functions and a single level of wavelet
functions. The formulation depends on whether the wavelet
functions (and their duals) are symmetric or antisymmetric
about one-half (see Fig. 1). If the wavelets are symmetric (e.g.,
CDF , , , and cubic-spline Battle–Lemarie),
then, at cell (in one dimension), the component occupies
the same position as the component, whereas occupies
the same position as (we call the “position” of a field com-
ponent, the coordinate where the scaling or wavelet function
associated with it peaks out). If the wavelets are antisymmetric
[e.g., CDF ], then, at cell , the component aligns
with the component , whereas aligns with . The
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MRTD update equations in the symmetric case are (for 1-D
propagation)

(9a)

(9b)

(9c)

(9d)

where ,
(we have ) and

(we have
). Notice that we have dropped the index zero indicating the

wavelet level. For the biorthogonal MRTD schemes, theand
coefficient have different values, unlike the Battle-Lemarie

scheme [1], which uses orthonormal basis functions. For the an-
tisymmetric case, the corresponding equations are

(10a)

(10b)

(10c)

(10d)

where the coefficients , , and have the same ex-
pressions as above. Their values are listed in Table II for all the
wavelet families considered above.

The stability criterion can be written as (11), shown at the
bottom of this page [3], in which . The max-
imum values of required by a stable algorithm (in
one dimension) are given in Table I.

To analyze the dispersion properties of the MRTD scheme
using one level of wavelets, we plot similar phase error graphs

(11)
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versus the discretization rate, as discussed in the previous sec-
tion. The dispersion relationship for the numerical MRTD solu-
tion of Maxwell’s equations can be written as

(12)

where

(13a)

(13b)

(13c)

(13d)

In the numerators of and , we take sine for symmetric
wavelet systems and cosine for antisymmetric wavelet systems.
The graphs in Fig. 6 were obtained for (which insures
that all schemes are stable) and the same families of wavelets
as in the previous sections. In theory, by introducing a level of
wavelets, the resolution of the MRTD schemes should double.
However, the curves in Fig. 6 show a modest reduction in the
phase error for the Battle-Lemarie MRTD scheme (stencil size
9) when wavelets are considered, as compared to the case where
the expansion was provided by scaling functions only. One ex-
planation for this result can be again provided by the truncation
of the MRTD coefficient sequence. However, we conjecture
that the principal reason for the small difference between the
two Battle–Lemarie MRTD schemes (one using scaling func-
tions only and the other using scaling plus first-level wavelet
functions), when they both use the same Courant number, is
the fact that, in the second case, we operate much closer to
the stability limit (see Table I). The curves in Fig. 6 indicate,
against expectations, that the performance decreases as the
order of the wavelet system increases. However, we can explain
this by taking into account that the numerical dispersion error
is also a function of the Courant number. One can notice that,
e.g., in the Battle–Lemarie scheme, is very close
to the stability limit, whereas for CDF , this value is
well below the stability limit of the scheme. As mentioned in
Section III, the errors decrease with. In Fig. 7, we consider
the same dispersion curves, but operate all MRTD schemes at
Courant numbers equal to 95% of their stability limits. Now the
dispersion performances of the schemes are as expected (i.e.,
the higher order schemes offer better performance). However,
the comparison we make in Fig. 6 is meaningful because, in

Fig. 6. Phase error (in degrees per wavelength) versus discretization rate for
MRTD schemes using expansion of the fields in terms of scaling and one level
wavelet functions. For all schemes, the Courant number isq = 0:25. 1-D
propagation. The curves for CDF(2; 4) and CDF(3; 3) are on top of one
another.

Fig. 7. Phase error (in degrees per wavelength) versus discretization rate for
MRTD schemes using expansion of the fields in terms of scaling and one level
wavelet functions. For all schemes, the Courant number is 95% of the stability
limit. 1-D propagation. The curves for CDF(2; 4) and CDF(3; 3) are on top
of one another.

this case, all MRTD schemes have the same time step. The
graphs in this figure clearly show that, for the same time step,
the biorthogonal schemes have lower numerical dispersion than
the Battle–Lemarie scheme.

The stencil sizes for the coefficient sequences, , ,
and are given in Table III. Once again, the biorthogonal
MRTD schemes with low-order support, e.g., CDF and
CDF , are the most efficient in terms of the number of
computations (while providing better dispersion performance
than the Battle–Lemarie basis for a similar Courant number). In
this case, where one scaling and one level wavelet functions are
employed, the number of calculations in the update equation for
one field component is about times larger than
the ones required by FDTD. Again, the savings of the MRTD
algorithm increase with the number of spatial dimensions. We
should also mention that the differences in the Courant number
for the schemes using scaling plus one level wavelet functions
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TABLE III
STENCIL SIZES FORDIFFERENTMRTD SCHEMES

TABLE IV
RESONANT FREQUENCIES FOR ANAIR-FILLED METALLIC CAVITY (ALL FREQUENCIES INMEGAHERTZ)

are significant, as one compares, e.g., the CDF scheme
with the Battle–Lemarie scheme (see Table I). This means that,
in the former algorithm, we can choose a time step that is more
than double the one used by the latter scheme, and still maintain
stability. However, increasing the time step adversely affects the
accuracy of the algorithm (compare Figs. 6 and 7). Finally, we
note that, when using scaling functions and wavelets (here, a
single wavelet level), the MRTD also has the added benefit of
multiresolution. In this context, scaling functions alone can be
used in regions in which the fields vary relatively slowly, with
wavelets added locally in regions of fast field variation.

V. NUMERICAL EXAMPLE

To address implementation of the MRTD with CDF biorthog-
onal wavelets, we consider a simple electromagnetic problem,
i.e., studying the resonant frequencies of an air-filled metallic
cavity, in a manner similar to the example in [1]. We considered
a 2-D cavity of 1 m 2 m (with perfectly conducting walls)
discretized with a grid step of m for all versions of
FDTD/MRTD models. We performed simulations using the
MRTD algorithm based on scaling functions alone (S-MRTD
with the notations in [1]) and the same algorithm based on
scaling and first level wavelet functions (W-MRTD). In the
latter case, we employed the full expansion in both directions,

uniformly throughout the whole computational domain. The
Battle–Lemarie MRTD scheme uses a stencil size 9 (as given
in Table III). We also implemented the same problem with the
Yee FDTD algorithm. The Courant numbers were for
S-MRTD, for W-MRTD (same for all wavelet bases),
and for FDTD. We considered four resonant frequen-
cies, which were obtained either in TE or TM polarizations.
We chose a relatively high discretization rate in order to have
a number of cells larger than the stencil size of any scheme in
each direction. In this manner, only one image of the cavity is
required at each metallic wall in order to enforce the boundary
conditions. The numerical results are given in Table IV.

Based on these results, we can conclude that all MRTD
schemes provide good accuracy in measuring the resonant
frequencies of the cavity, and they all perform better than
FDTD. The differences between the various schemes are
small—some model the higher frequencies more accurately,
whereas others do better on the lower frequencies. As expected,
adding one level of wavelets resulted in improved precision.
However, one should be aware that the Courant number for
W-MRTD is different from that used by the S-MRTD (the time
steps are different). Also, based on the discussion in the pre-
vious section, the numerical results confirm that, for the same
Courant number, the CDF W-MRTD scheme provides
the most accurate results. We emphasize that the point of this
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numerical experiment is simply to underscore that the MRTD
is implemented easily, using either CDF biorthogonal wavelets
or the orthogonal Battle-Lemarie wavelets. In particular, in
these computations, we have not focused on the reduced spatial
discretization afforded by the various MRTD schemes, this
issue having been addressed in the dispersion studies.

VI. CONCLUSIONS

In this paper, we have formulated the MRTD algorithm using
biorthogonal wavelet families. We chose the CDF biorthogonal
systems because they fit well with the requirements for an effi-
cient MRTD scheme: maximum number of vanishing moments
for the wavelet function (for a given support), good regularity
for the dual-wavelet function, and compact support. We ana-
lyzed the dispersion properties of the MRTD scheme for a few
families of CDF biorthogonal wavelets and compared them with
the cubic-spline Battle–Lemarie scheme. Although, in theory,
the latter should perform better in terms of numerical disper-
sion, the error associated with truncating the MRTD coefficient
sequence vitiates the accuracy of the scheme, when finite arith-
metic precision is considered. The effect is more evident when
we consider field expansion in terms of scaling and first-level
wavelet functions. The biorthogonal wavelet systems do not
present this problem, due to their compact support, although
high precision is required in the MRTD coefficient calculation
in order to minimize arithmetic inaccuracies. Also, the com-
pact support of the biorthogonal wavelets reduces the total CPU
time relative to the Battle-Lemarie wavelets for similar levels of
phase error.
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